

Texas A&M Engineering x Arts et Métiers AM2 – Virtual to In Person Workshop 2

June 15, 2021

Project Leaders

Dr. Regis Kubler – Arts et Métiers

- Associate Professor
 Mechanics, Surface and
 Material Processing
- Leading the Education Programs under the AM2 Partnership

Arts Institute of Technology et Métiers

Dr. Maria Alves – Texas A&M Engineering

 Senior Director for Halliburton Engineering Global Programs

AM

TEXAS A&M UNIVERSITY

Engineering

 Leading the Education Programs under the AM2 Partnership

College of Engineering

Engineering

Consistently ranked among the Top 10 Public Engineering Programs

3rd in the nation in research expenditures

1st in *50 Best Value* Bachelor's and Graduate Engineering Programs

Dr. Dr.

ARTS ET METIERS A UNIQUE ENGINEERING SCHOOL WITH 8 CAMPUSES AND 3 INSTITUTES

Study Abroad Program 2019 in Aix en Provence

Transitioning to Virtual Exchange Covid - 19 Relief Fund

- Launched by the FACE Foundation in collaboration with the French Embassy in the U.S. and the U.S. Embassy in France
- Aims at supporting French-American collaborations and preparing for the post-pandemic when international travel resumes

TEXAS A&M UNIVERSITY

Engineering

AM

Arts Institute of et Métiers

AM2 Partnership

- Arts et Métiers and Texas A&M Engineering, two top engineering institutions, teamed up after over 20 years of collaboration in the area of advanced manufacturing and material science, to establish the AM² transatlantic partnership
- It aims to positively impact the global manufacturing industry through extensive research collaborations, education programs, and mutual faculty and student exchange initiatives

https://www.am2.tech/

Ā M

TEXAS A&M UNIVERSITY

Engineering

AM2 Partnership

Existing Collaborations

- AM2 Research Partnership in Smart Manufacturing
- Faculty Led Study Abroad
- Collaborative Degree
- Dual Degree

Building on

- Joint Virtual Global Engineering Design Class
- Reciprocal Exchange

A M

Arts Institute of Technology et Métiers

TEXAS A&M UNIVERSITY

Engineering

Virtual to In Person

TEXAS A&M UNIVERSITY

Goal: Build the infrastructure for a large and sustainable Student Exchange Program between TAMU Engineering (TAMU) and Arts et Métiers campus in Aix-en-Provence

Students: Implemented a fall semester joint virtual Global Engineering Design class

Academic advisors and faculty members: Connected academic departments to identify course equivalencies to map a semester long student exchange

Global Virtual Engineering Design Course

Course Description

- Students carry out an engineering design project working in international teams of students, faculty and industry experts
- In addition to applying engineering skills in the project, topics also include:
 - Study and application of intercultural models
 - Global enterprise fundamentals
 - Remote collaboration technologies

Arts

Learning Outcomes

Integrate and apply skills required to solve an engineering design problem

Apply intercultural knowledge for self-improvement

Identify intercultural differences and similarities, and their relevance to effectiveness in the workplace

Apply intercultural knowledge for effective teamwork

Apply synchronous and asynchronous technologies for remote and web-based collaboration

Class Schedule

TEXAS A&M UNIVERSITY Engineering

	8/27	8/29	9/3	9/5	9/10	9/12	9/17	9/19	9/24	9/26	10/1	10/3	10/8	10/10	10/15	10/17	10/22	10/24	10/29	10/31	11/5	11/7	11/12	11/14	11/19	11/21	11/26	11/28	12/3	12/7
ΤΟΡΙΟ ₩ΕΕΚ		1	2	2		3	4	1		5		6		7	٤	8	9)	1	0	1	1	1	2	1	3	1	14	1	.5
LECTURE																														
L1. RC and Communication					ſ		Dra	ctic		nd '		600			1															\square
Introduction & Procedures					\neg		1.6	CLR		iu.			08	r	J															
Remote colloboration tools																														
								Г	-				h							-										\square
L2. Intercultural competence								$ \land$	Dr.	101.		es								-										
Intercultural communication						*														·										
																														\square
L3. Cultural differences and models																				-		Ŷ	116	en	G					
Introduction to culture																						N	lee	tin	JS.	on				
Hall's Context Model																						(1)	lot	eet	lar	cla				
Hosftede's cultural dimensions																							m	eel	ing	5)				
L4. Application																														
PROJECT																								15 1.11.1 1	E					5
P0. Design methodology																														ξ
P1. Problem description					_			_	10]	ect	De:	СП																	3	
P2. Individual research & sharing																				-										
P3. The voice of the customer																														Ë [
P4. Idea generation and ranking																													7	
P5. Detailed design & prototyping																													l i	ET
P6. Final integration/validation																													5	-
P7. Final report and presentations																														

Student Affiliation	Student Major	Project	Project Contact	Project Description
Arts&Metiers	MEEN	E1	Regis Kubler	Development of a Power Projection Gun
TAMU	BMEN	E1		
TAMU	PETE	E1		
Arts&Metiers	MEEN	E1		
TAMU	ELEN	E1		
AUTh	MEEN	T1.1	Oswaldo Bastidas	Design a Rack Retainer
TAMU	MMET	T1.1		
TAMU	MSEN	T1.1		
TAMU	INEN	T1.1		
ADEL	REEP	T1.1		

Global Engineer

Arts Institute of et Métiers A&M UNIVERSITY Engineering

- Understand and appreciate Cultural Differences
- Different cultural groups think, feel, and act differently
- There are no scientific standards for considering one group as intrinsically superior or inferior to another
- Facts x Interpretation: We interpret facts based on our cultural values and background
- Global Competency skills will make you a more effective engineer

Activity – Direct Poll

http://etc.ch/PLJE

- <u>https://www.youtube.com/watch?v=kCIAb6hvPgY&t=31s</u>
- https://www.youtube.com/watch?v=SJxHW6GtdbE&t=14s

– <u>https://www.youtube.com/watch?time_continue=592&v=zQj1VPNPHII</u>

- 1.50 to 5Min

Besides self-awareness

This exercise demonstrates that we cannot stereotype cultures

Students Ambassadors

https://artsetmetiers.fr/fr/actualit es/global-engineering-designune-experience-internationaledomicile

ÂM

TEXAS A&M UNIVERSITY

Engineering

Arts Institute of Technology et Métiers

Moving Forward

TEXAS A&M UN

Engineering

- The course will continue to be offered every Fall Semester as a Global Experience at Home and to build student momentum
- The virtual class helps us establish a target audience and develop ambassadors for the in-person exchanges (faculty-led, reciprocal exchange, global internship, dual degree)

Questions about the Collaborative Virtual Class?

Course Mapping for Curriculum Integration

Student Exchanges between two education systems

Arts et Metiers to Texas A&M: courses have to be in the scope of the semester (mechanical engineering) addressing scientific issues and developing managerial skills (9-12 US credits, 400'-600')

Texas A&M to Arts et Metiers: courses in English required in the degree plan at Texas A&M, meeting ABET documentation requirements

Objectives

 Co-hosted faculty networking meetings for mapping courses for semester exchange (FACE grant 2020-2021, Exchange Programs 2021-2025)

- Connect academic advisors and faculty members responsible for validating course transfer and degree plan to map a semester long exchange of Texas A&M students in Aix en Provence campus
- Define the courses to be transferable to the degree plan of the students without graduation delays
- Meeting followed by individual actions on specific courses between professors and their counterparts (subject matter experts, departments)

Timeline

Engineering

Course structure at Arts et Métiers years 3 and 4

3rd YEAR Arts et Métiers COURSE PRODUCT MANUFACTURING (INTERMEDIATE) (50H) (4 ECTS)

• Prerequisites:

None

Welding, Forming and Casting

Objectives and desired outcomes

On successful completion of the module, students will be able to:

- Describe some main material processes (tools, machine design),
- Explain the physics behind the process,
- Choose a process for a given application,
- Implement and instrument a manufacturing tool,
- Follow health and safety rules during manufacturing,
- Implement the interactions between parts/processes and design/geometry
- Describe and identify the defects and be able to characterize them and their physical origins in order to solve them,
- Identify and implement the different control means (metrology, NDT)
- Determine the interactions between materials and processing
- Grading system:
 - 4 intermediate exams + final exam
 - 6 practical works (TP)
- Suggested textbooks:
 - Olson, D. L. (Ed.). (1993). ASM handbook: welding, brazing, and soldering (Vol. 6). Asm Intl.

3rd YEAR Arts et Métiers – PRODUCT MANUFACTURING (INTERMEDIATE) (50H)

• Grading system:

All marks are graded from 0 to 20

Final mark = 0.3 x C_CE + 0.3 x C_FE + 0,2 x FW_CE + 0,2 x FW_FE

C_CE: Casting continuous evaluation

C_FE: Casting final exam

FW_CE: Forming and Welding continuous evaluation

FW_FE: Forming and Welding final exam

If Final mark < 10, FAIL -> retake of final exam If Final mark ≥ 10, PASS

Welding (10 h)								
L1 (1h)	Introduction to welding principles							
	Material interactions : base metal, fusion zone, HAZ							
L2 (1h)	Brazing : description of processes							
L3 (1h)	Welding : description of arc welding, laser beam welding, friction stir welding							
L4 (1h)	Static dimensioning of welds							
EX1 (2h)	Static dimensioning of welds							
TP1 (4h)	Shielded metal arc welding: process parameters, weld dimensioning							

Forming (10 h)

- L1 (1h) Introduction to forming principles
- **L2 (1h)** Forging : process, operating conditions
- L3 (1h) Stamping : process, operating conditions
- L4 (1h) Bending : process, operating conditions
- EX1 (2h) Stamping
- TP1 (4h) Bending

L: Lecture, Ex: Exercice class, TP: Practical work (workshop)

3rd YEAR Arts et Métiers – PRODUCT MANUFACTURING (INTERMEDIATE) (50H)

Casting (30 h)								
L1 (2h)	Molding and casting processes: Permanent and non-permanent molds, lost wax, lost foam, casting by gravity, low pressure, high pressure							
L2 (2h)	Physics of solidification: Thermodynamics of phase change, solidification path, nucleation and growth of grains, macroscopic transports phenomena and induced casting defects							
L3 (2h)	Thermal analysis of a part and feeders design: Thickness analysis of a part, localisation of hot spots, rules of feeder design							
L4 (2h)	Filling analysis of a part and filling system design: Filling induced defects, rules of filling system design							
EX1 (2h)	Development of an analytical thermal model of cooling and solidification of a plate							
EX2 (2h)	Feeders localisation and design on a given part							
EX3 (2h)	Filling system localisation and design on a given part							
TP1 (4h)	Green sand mold making by hand, casting and analysis of the part depending on the filling system design choice							
TP2 (4h)	Green sand mold making by machin, casting and analysis of the part depending on the feeders localisation and size							
TP3 (4h)	Core making, metallic mold casting and analysis of the mold design and the comparison between sand and metallic mold design							
TP4 (4h)	Numerical simulation of TP1 experiment, analysis of the predicted misrun and shrinkage porosities defects and comparison to experiment							

3rd YEAR Arts et Métiers – PRODUCT MANUFACTURING (INTERMEDIATE) (50H)

	Month 1	Month 2	Month 3	Month 4	Month 5
	L1 – 1 h Principles	Ex1 – 2 h Stamping	TP1 – 4 h <i>Bending</i>		
Forming	L2 – 1 h Forging				
Forming	L3 – 1 h Stamping				<u></u> Ω−
	L4 – 1 h Bending				
		L5 – 1 h Principles	Ex1 – 2 h <i>Welding</i>	TP1 – 4 h <i>Welding</i>	ΕΧΑΜ
Welding		L6 — 1 h Brazing			Last week of the semester
Welding		L7 – 1 h Welding			1 h written test
		L8 – 1 h Static dimension	Ē	E.	
	L1 – 2h Casting processes	L3 – 2h Feeders design	Ex3 – 2h Filling system design	TP3 – 4h Permanent mold castin	
Casting	L2 – 2h Solidification physics	Ex2 – 2h Feeders design	TP1 – 4h Green sand casting b	TP4 – 4h Casting simulation	
	Ex1 – 2h Analytical solidification model	L4 – 2h Filling system design	TP2 – 4h Green sand casting by machine		
04/02/2021		A&M – Mar	nufacturing Syllabus		

Padlet activity – Question 1

- By reading this Arts et Metiers syllabus, if you were the person for validating the syllabus for an American University degree plan, what questions would you have to complete the validation process for an exchange student ?
 - <u>https://padlet.com/regiskubler/7g3eol784u46phav</u>

TEXAS A&M UNIVERSITY Engineering

Workshop 2- Course Mapping- Question 1

By reading this Arts et Metiers syllabus, if you were the person validating the syllabus for an American University degree plan, what questions would you have to complete the validation process for an exchange student?

REGIS KUBLER JUN 11, 2021 12:36PM

Are the expectations of American and French students similar wrt to laboratory practice? (wrt to autonomy)

How you assess the cultural aspect of your course?

Do you have any feedback from the students?

If any group work Maybe a suggestion to encourage multicultural teams

What about the lab? there is a virtual/remote lab?

Oral activities can improve communication skills of your students.

How do you measure the creativity of your students?

It will be great if you can discuss the syllabus with your students to have there feedback

Do you complete a pre and post assessment on cultural competency?

Do you have an assessment tool?

Credits

How many credits would you award this course at both institutions? Equivalent? Or different number of credits?

Required reading vs recommended ?What , if any, additional sources of resources (online)

How many hours of lecture?

The list of topics covered Examples of assessments (exam, quizzes, homework, etc) An explanation of the grading system, knowing that a 20/20 is almost never given.

Hello

is there any oral quiz or exam?

Mapping Outcome

Product Manufacturing Year 3 OR Systems Manufacturing Year 3	MMET 181	 Arts&Metiers Product Manufacturing (year 3): Forming, welding, and casting. Arts&Metiers System Manufacturing (year 3): Machining, metrology, and polymer processes. MMET 181 covers all topics for the above courses, but does not go into detailed and comprehensive lab exercises compared to the Arts&Metiers courses <u>Either course could substitute MMET 181.</u> In-depth knowledge and comprehensive lab exercises with lab reports and presentation would be beneficial to students in the long-run. 3 lecture hours and 8 lab hours. There is no additive manufacturing
		3 lecture hours and 8 lab hours. There is no additive manufacturing content.

"Their simulation software comes with either English or French commands"

"TAMU students (international and domestic) can also receive an international engineering certificate if they spend a semester at Arts et Métiers and take an additional language course (e.g. French, Spanish, Italian..) there"

Technical Electives are also a possibility for other courses

Professors as ambassadors

Padlet activity – Question 2

2. On a trip to the partner university, what would you like to see and learn about the partner university to recruit students for the exchange ?

Padlet activity – Question 3

3. What challenges do you find for recruiting students for semester exchanges and how do you address them ?

Anticipated outcomes

• Semester reciprocal exchange

- 5 students for spring 2022, with 3-4 selected courses
- **Hybrid program**: Use of the infrastructure of a summer faculty led program with in-person classes taught by Arts et Métiers professors
 - 12 students for summer 2022
- Large and sustainable student participation on both program types on the following years
- Develop globally competent engineers to lead the global industry and society by intentionally integrating student engagement activities and intercultural training

TEXAS A&M UNIVERSITY

Questions about the Course **Mapping Session?**

Conclusion and Future Direction

Participants Main Takeaways & Closing Discussion

